AMIP: Approach and Lessons Learned

Karl Taylor

Program for Climate Model Diagnosis and Intercomparison Lawrence Livermore National Laboratory

Workshop on CEC Project for
Intercomparison of Simulations of California's Climate
Sacramento, CA
11 June 2004

Outline

- AMIP approach and evolution.
- Lessons learned from AMIP and other MIP's.
- Future directions.

The Atmospheric Model Intercomparison Project (AMIP)

Experiment design:

- → Stand-alone atmospheric model run with realistically prescribed, monthly varying sea surface temperatures and sea ice (1979 – present)
- → Several well observed parameters specified (e.g. solar constant & orbital parameters, etc.)
- Coordinated by PCMDI with oversight provided by WGNE (a WMO committee).
- Participation: more than 30 modeling groups from around the world have contributed output, some from multiple versions of their models.
- Analysis procedure
 - Predefined set of model output adhering to community-adopted metadata standards placed in a uniform database
 - Diagnosis and evaluation performed by modeling groups and a wider community of specialists
 - Model performance summaries prepared by PCMDI.

Original AMIP goals

- Evaluate models run under identical experimental conditions
- Identify systematic errors in models
- Attract a broad scientific community to help in analyzing the models.
- Improve models

AMIP achievements

- Established AMIP as a benchmark experiment
 - periodic appraisal of atmospheric models
 - monitor changes in model performance.
- Determined relative strengths and limitations of individual models.
- Fostered cooperative modeling culture:
 - Increased camaraderie among participating groups
 - Increased openness about model flaws
- Exposed flaws in individual models which sometimes led to model improvements.
- Enabled "economies of scale" in model diagnosis and evaluation

Lessons from AMIP and other MIP's

- Community consensus on experiment design is essential
- Don't underestimate the work involved in preparing boundary conditions.
- Model output (data) issues should be addressed early.
- Success may depend on obtaining funding specifically to support a project office.
 - → Responsible for project coordination, data collection and distribution, maintaining communications (web site), etc.
 - → Requires major commitment of time from at least one scientist and at least one computer-savvy individual.
- Quick summaries of overall results might best be prepared by members of the contributing groups, but broader community involvement in the analysis of MIP results should be encouraged.

Generalizations based on AMIP experiments:

- Models are improving.
- Mean or median model results appear to be superior to even the best individual models – model diversity is desirable.
- It is helpful for groups to see how their model compares with others.

AGCMs are Improving in a Quantifiable Way

Has the median model improved from AMIP 1 to AMIP 2?

Have individual GCMs improved over the past decade?

Have atmospheric GCMs improved over the past decade?

Have AGCMs improved in their simulation of total cloud cover?

Percentage change in total error (AMIP2-AMIP1)

Errors have been reduced especially in outlier models.

Cloud Fraction

From IPCC, 2001

The most important practical lesson:

- Impose strict requirements on the format and structure of model output.
- Agree on a set of standard model output.
 - → Do not be overly concerned about amount of data (e.g., ask for monthly samples, not climatological means, or long accumulations)
 - → Ask for some high frequency snap-shots

There is increasing support for unifying model output across MIP's.

- The IPCC and nearly all MIP's have adopted netCDF as the preferred format for archived data.
- The CF-metadata conventions are required by IPCC and many MIP's.
- Many groups are now using a software library (CMOR) written by PCMDI to rewrite their model output
 - → CMOR satisfies the requirements of IPCC and many MIP's.
 - → CMOR ensures a uniformity in the structure and information included in archived data.

What are the CF-Metadata Conventions?

- A standard way of generating a self-describing netCDF file.
- An extension of an earlier, more limited "COARDS" standard.
- It encourages storage of metadata that can be useful in model diagnosis.
- The conventions enable development of common software that can understand model output from diverse sources.
- See http://www.cgd.ucar.edu/cms/eaton/netcdf/CF-working.html

Metadata accommodated by the CF standard

- data set description: title, institution, source, history, published references
- variable description: standard name, units, dimensions, and indication of dimension type (longitude, latitude, time, etc.)
- axis description: coordinate values and bounds, projection information, averaging information (e.g., climatology)
- missing value identification
- specification of data compression/packing method
- much more

Future directions – a personal view

- Work toward an integrated set of benchmark experiments
 - → Tests of coupled models and also their components (CMIP, AMIP, OMIP)
 - → Tests at various time-scales (weather, seasonal prediction, climate)
 - → Process intercomparisons coordinated across MIP's (e.g., CMIP/PMIP "water-hosing" experiment, CFMIP to help diagnose CMIP simulations)
- Universal adoption of CF metadata standards for model output
- Gradual evolution toward distributed data bases
- Increased interest of an expanding community of diagnostic specialists.
- Mounting pressure to expose models to scrutiny before accepting their projections for future climate change.
- Reduced infrastructure support required.

Concluding thoughts

- Additional complications face an intercomparison project involving predictions of future climate change.
 - No observations
 - → How do you interpret differences? "uncertainty" or simply "spread"?
- Recommend that regional climate modelers join global modelers in accepting the CF-conventions
- Better yet, use CMOR to structure model output and include metadata that will facilitate analysis of model output by a wide community of researchers.

